New Disease Reports

First report of the association of a '*Candidatus* Phytoplasma asteris'- related strain with *Plumbago auriculata* leaf yellowing in India

P. Panda¹, T. Rihne², M.G. Reddy³ and G.P. Rao³*

¹ Discipline of Life Sciences, Indira Gandhi National Open University, New Delhi 110068, India; ² Division of Floriculture and Landscaping, Indian Agricultural Research Institute, New Delhi 110012, India; ³ Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India

*E-mail: gprao_gor@rediffmail.com

Received: 13 Aug 2019. Published: 28 Oct 2019. Keywords: cape plumbago, virtual RFLP, 16SrI-B

Plumbago auriculata (Plumbaginaceae) is a perennial ornamental shrub with many therapeutic values and native to South Africa (Saji & Antony, 2015). Several groups of phytoplasma have been reported to infect ornamental and medicinal plants all over the world (Rao *et al.*, 2018). However, no phytoplasma has been found so far in *P. auriculata*.

Leaf yellowing symptoms on P. auriculata plants (Fig. 1) were observed in Baramati, Pune, India in March 2016 with a disease incidence of 8-10%. To verify the presence of phytoplasma, three symptom-bearing and three asymptomatic P. auriculata samples were collected and DNA was extracted using the CTAB protocol. PCR was performed in a Mastercycler (Eppendorf, Germany) (Rao et al., 2014) and DNA from the sesame phyllody phytoplasma (16SrI group) (GenBank Accession No. KC920747) was used as a positive control. The 16S rRNA gene was amplified from all the symptomatic P. auriculata leaf yellowing (PaLY) samples but not from the asymptomatic samples using P1/P7 (Schneider et al., 1995) followed by R16F2n/R2 primer pairs (Gundersen & Lee, 1996) in nested PCR. Amplicons of the expected size (c. 1.25 kb) were purified and directly sequenced (MN239503 and MN239504). BLAST analysis showed that these 16Sr RNA gene sequences shared 100% identity with phytoplasmas in the16SrI group (MG252367, MK440284, MK440282, KX15181 & KT957205). A phylogenetic tree was constructed using the neighbourjoining method with MEGA 7.0 (Fig.2).

The R16F2n/R2 sequence of the PaLY phytoplasma was subjected to in RFLP the *i*PhyClassifier online silico using tool (https://plantpathology.ba.ars.usda.gov). The iPhyClassifier analysis indicated that the virtual RFLP patterns derived from the 16S rDNA F2n/R2 fragment of the PaLY phytoplasma strain with restriction enzymes were similar to those of a phytoplasma strain from group 16SrI, 'Candidatus Phytoplasma asteris' (M30790), formerly Aster Yellows Group, subgroup B, with a similarity coefficient of 1.0. Based on sequence and RFLP results, the PaLY phytoplasma is classified as a member of the phytoplasma subgroup 16SrI-B.

Phytoplasmas have been recorded from plant species in the Plumbaginaceae such as *Limonium sinuatum* in Canada, Europe and Israel (Rao *et al.*, 2018). In India, the '*Ca*. P. asteris' group is the most widespread

group and has been found in 64 plant species (Rao *et al.*, 2017). Phytoplasmas in subgroup 16SrI-B have been associated particularly with diseases in pineapple, sesame, sugarcane, squash, rose and fennel. The present study reports *P. auriculata* as a new host for the 16Sr I-B phytoplasma subgroup worldwide.

Acknowledgements

The authors wish to express sincere thanks to Head, Division of Plant Pathology and Director, Indian Agricultural Research Institute for providing laboratory facilities.

References

Gundersen DE, Lee IM, 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer sets. *Phytopathologia Mediterranea* **35**, 144-151.

Rao GP, Bertaccini A, Fiore N, Liefting LW, eds, 2018. *Characterisation* and Epidemiology of Phytoplasma-Associated Diseases (Phytoplasmas: Plant Pathogenic Bacteria - I). Switzerland: Springer Nature. http://dx.doi.org/10.1007/978-981-13-0119-3

Rao GP, Madhupriya, Thorat V, Manimekalai R, Tiwari AK, Yadav A, 2017. A century progress of research on phytoplasma diseases in India. *Phytopathogenic Mollicutes* **7**, 1-38. http://dx.doi.org/10.5958/2249-4677.2017.00001.9

<u>http://dx.doi.org/10.3938/2249-4077.2017.00001.9</u>

Rao GP, Madhupriya, Tiwari AK, Kumar S, Baranwal VK, 2014. Identification of sugarcane grassy shoot-associated phytoplasma and one of its putative vectors in India. *Phytoparasitica* **42**, 349-354. <u>http://dx.doi.org/10.1007/s12600-013-0366-1</u>

Saji A, Antony VT, 2015. *Plumbago auriculata* Lam. *International Journal of Pharmaceutical Sciences Review and Research* **33**, 281-284.

Schneider B, Seemüller E, Smart CD, Kirkpatrick BC, 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In: Razin S, Tully JG eds. *Molecular and Diagnostic Procedures in Mycoplasmology*. New York, USA: Academic Press, 369-380. http://dx.doi.org/10.1016/B978-012583805-4/50040-6

To cite this report: Panda P, Rihne T, Reddy MG, Rao GP, 2019. First report of the association of a '*Candidatus* Phytoplasma asteris'-related strain with *Plumbago auriculata* leaf yellowing in India. *New Disease Reports* **40**, 15. http://dx.doi.org/10.5197/j.2044-0588.2019.040.015

© 2019 The Authors This report was published on-line at www.ndrs.org.uk where high quality versions of the figures can be found.

Figure 2

0.07

New Disease Reports is a peer-reviewed on-line journal published by the British Society for Plant Pathology, for more information visit http://www.ndrs.org.uk/